Tetrahedron Letters, Vol.26, No.1, pp 107-110, 1985 Printed in Great Britain 0040-4039/85 \$3.00 + .00 ©1985 Pergamon Press Ltd.

ABSOLUTE CONFIGURATIONS OF THE HISTAMINE LIBERATING SESQUITERPENE LACTONES THAPSIGARGIN AND TRILOBOLIDE

S. Brøgger Christensen* and Elsebeth Norup

Department of Chemistry BC, Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark

<u>Summary:</u> The absolute configuration of trilobolide and the revised one of thapsigargin classify the compounds as a group of guaianolides previously not found in higher plants.

A number of very potent skin irritating sesquiterpene lactones, including thapsigargin (1) and thapsigargicin (2), have been isolated from the roots of *Thapsia garganica* (L)¹. Based on a X-ray analysis of the epoxide $(3)^2$ and chemical and spectroscopical investigations³, the relative configurations shown by formulae 1 and 2 were assigned to thapsigargin and thapsigargicin, respectively.

Expansion of the phytochemical investigations of Thapsia garganica L. (Apiaceae) to the entire genus Thapsia revealed the presence of a number of lactones, all having the same hexaoxygenated quaianolide nucleus as in 1 and $2^{4,5}$. In addition, two pentaoxygenated guaianolides were isolated⁴, one of which was identical to trilobolide (4), previously isolated from Laser trilobum (L.) BORKH⁶ (Apiaceae). Beside constituting an interesting phytochemical group, these sesquiterpene lactones also possess a number of very interesting pharmacological properties. Thus, they are very potent histamine liberators from rat mast cells¹ and activate human neutrophilic and basophilic leucocytes⁷. A screening of 2 against P388 lymphocytic leukemia performed under the auspices of the Development Therapeutics Program, Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland, has disclosed a T/C value of 135 at 4 mg/kg.

Application of Horeau's method to the secondary alcohol 5, obtained by partial saponification of 1, indicated that 5 and consequently 1 possess absolute configurations opposite to those shown in formulae 5 and 1 respectively³. A major drawback of Horeau's method, however, is that priority of the ligands bound to the asymmetric alcohol carbon can only be assigned on an empirical basis⁸. Wrong choices of priority have led in some cases, also in the field of sesquiterpene lactones, to wrong conclusions concerning the absolute configurations⁹. The presence in 1 of an allylic alcohol moiety esterified with an α,β -

1 27 66	br	12 3.27	- br
27 66	br	3.27	br
66	-		
	m	2.66	m
а		а	
59	m	5.59	m
24	br	5.24	br
98	t	4.98	t
27	dd	2.26	dd
20	dd	2.20	dd
63	s	1.63	s
20	s	1.20	s
84	br	1.84	br
43	m	2.45	m
19	d	1.18	d
92	t	0.93	t
	a 59 24 98 27 20 63 20 84 43 19 92	66 m a 59 m 24 br 98 t 27 dd 20 dd 63 s 20 s 84 br 43 m 19 d 92 t	66 m 2.66 a a 59 m 5.59 24 br 5.24 98 t 4.98 27 dd 2.26 20 dd 2.20 63 s 1.63 20 s 1.20 84 br 1.84 43 m 2.45 19 d 1.18 92 t 0.93

Table 1 1 H NMR Data (270 MHz;CDCl₃) for the new compounds 6, 7, 11, and 12.

a: The signal coincided with other signals.

- 3: $R^{1}=Oc; R^{2}=Bu$ $R^{3}=Ac$ 8: $R^{1}=-H; R^{2}=S-MBu$
- \sim R³=Ac
- $9: R^1 = R^2 = R^3 = -H$
- $\underbrace{10: R^1 = R^2 = -H}_{R^3 = Ac}$

AnO

- $\underbrace{11:}_{R^2=S-MBu}^{R^1=R^3=-H}$
- $12: R^{1}=R^{3}=-H$ $R^{2}=R-MBu$

R²0....

15

1: $R^{1}=Oc; R^{2}=An$ $R^{3}=Bu$ 2: $R^{1}=Hx; R^{2}=An$ $R^{3}=Bu$ 4: $R^{1}=-H; R^{2}=An$ $R^{3}=S^{-}MBu$ 5: $R^{1}=Oc; R^{2}=An$ $R^{3}=-H$

6: $R^1 = Oc$; $R^2 = MBu$ $R^3 = Bu$ 7: $R^1 = -H$; $R^2 = MBu$ $R^3 = S - MBU$

OR³

)....OR²

12

0Ac

)⊪0R3 ■0H

OH

unsaturated acid made it possible to use the non-empiral CD exciton method for determination of the absolute configuration at $C(3)^{10}$. All contributions to the Cotton effects of 1 except those originating from the allylic angeloate moiety could be excluded by comparison of the CD spectra of 1 and 6. The dihydro derivative 6 was prepared by palladium-catalysed hydrogenation of an ethanolic solution of 1 at atmospheric pressure. Only the trisubstituted double bond was affected, and according to 270 MHz ¹H NMR spectroscopy, only one of the epimeric dihydroderivatives was formed. Subtraction of the two CD spectra showed that the allylic angeloate system of 1 led to a positive Cotton effect at 217 nm ($\Delta \epsilon$ =+5.4) proving the (S) configuration at C(3), as shown in formula 1. This stereochemistry, however, implies an α -orientated C(7)-C(11) bond, which is unique in guaianolides isolated from higher plants¹¹. (It is assumed that the structures are drawn,with the cyclopentene moiety to the left). In order to get further evidence for this stereo-chemistry, based on the CD exciton chirality method, which contradicts the result of Horeau's method, we decided to include trilobolide (4) to our investigations. From a biogenetic point of view it is very likely that $\frac{1}{2}$ and 4 will have the same absolute configuration at C(3), C(6), C(7), C(8), C(10), and C(11). Based on $^{1.3}$ C NMR spectroscopic investigations we have previously suggested the relative configuration shown in formula $\frac{4}{2}$ for trilobolide¹², a suggestion which has recently been confirmed by ¹H NMR^{$\tilde{1}3$} and X-ray analysis¹⁴. Being aware of the outcome of the Horeau analysis on 1 we choose, however, to draw the enantiomer of formula 4, whereas the other two papers 13,14 show formula 4. Comparison of the Cotton effect at 223 nm for 4 and the dihydroderivative 7 revealed a positive contribution from the allylic angeloate moiety $(\Delta \varepsilon = +2.8)$, as would be expected from the antipode represented by formula 4 (compound 7 was prepared by palladium-catalysed hydrogenation of 4). A further proof for this absolute configuration was obtained by proving the α -carbon in the 2-methylbutanoate moiety to have S-configuration. Based on this knowledge and the relative configuration of the entire molecule as evidenced by the X-ray structure¹⁴, trilobolide could be concluded to have the absolute configuration represented by formula 4. The strategy for determing the absolute configuration was to compare the 270 MHz 1 H NMR spectrum of 4 with that of a derivative in which the 2-methylbutanoate group had been replaced with a S-2-methylbutanoate group. Attempts to remove the 2-methylbutanoate group by partial saponification of 4 failed, probably because of the β -hydroxylactone moiety. However, treatment of 8^6 with a 5% potassium hydroxide solution for 4 h afforded a mixture of 9(20%)10(5%), and 11(25%). 4-Dimethylaminopyridine-catalyzed reacylation of 9 with (S,S)-2-methylbutyric anhydride afforded a product, the 270 MHz ¹H NMR spectrum of which was superimposable with that of 11. In contrast, the spectrum obtained when 9 was reacylated with racemic 2-methylbutyric anhydride clearly contained signals from the two epimeric products 11 and 12. Especially the signals originating from the methine proton and the 2-methyl protons of the 2-methylbutanoate moiety were well separated (Table 1).

Based on the concurrent results of the CD exciton chirality method and the X-ray analysis¹⁴ combined with the determination of the absolute configuration of the 2-methylbutanoate molety, we conclude that trilobolide does have the absolute configuration shown in formula 4. Furthermore, we revise the absolute configuration of thapsigargin to that of formula 1. From a biogenetic point of view it is very likely that the gualanolide nucleus in all the lactones described in ref. 5 also should be assigned this absolute configuration. These lactones thus are representatives of a group of gualanolides isolated from higher plants possessing an α -orientated C(7)-C(11) bond. In the formula of trilobolide given in a review of sesquiterpene lactones the only asymmetric center, for which an absolute configuration is suggested, is that of C(7)¹¹. Based on biogenetic considerations the wrong configuration is suggested illustrating how unexpected the correct stereochemistry is.

<u>Acknowledgement.</u> We are grateful to Dr. G. Borch and Mrs. L. Penzien for recording the CD spectra with a Dichrographe II, Roussel-Jouan, and to Mrs. J.Cohr for recording the NMR spectra with a Bruker HX 270 S. Both instruments are owned by the Danish Natural Science Research Council.

REFERENCES

- 1. Rasmussen U., Christensen S.B., Sandberg F.: Acta Pharm.Suec. 15, 133 (1978).
- Christensen S.B., Larsen I.K., Rasmussen U., Christophersen C.: J.Org. Chem. <u>47</u>,649(1982).
- 3. Christensen S.B., Schaumburg K.: J.Org.Chem. 48,396(1983).
- 4. Rasmussen U., Christensen S.B., Sandberg F.: Planta Med.43,336(1981).
- 5. Christensen S.B., Norup E., Rasmussen U., Madsen J.Ø.: Phytochem.: <u>23</u>,1659(1984).
- Holub M., Samek Z., de Groote R., Herout V., Sorm F.: Collect.Czech.Chem. Commun.<u>38</u>,1551(1973).
- 7. Unpublished results.
- 8. Marquet A., Horeau A.: Bull.Soc.Chim.Fr. 124(1967).
- 9. Doskotch R.W., El-Feraly F.S.,: J.Org.Chem. 35,1928(1970).
- 10. Harada N., Iwabuchi J., Yokota Y., Uda H., Nakanishi K.: J.Am.Chem.Soc. <u>103</u>,5590(1981). Nakanishi K. in Natural Products and Drug Development, Eds.: Krogsgaard-Larsen K., Christensen S.B., Kofod H., Munksgaard, Copenhagen 1984 p.417.
- 11. Fischer N.H., Olivier E.J., Fischer H.D., Fortschr.Chem.Org.Naturst. <u>38</u>,47(1979).
- 12. Christensen S.B., Norup E., Rasmussen U. in Ref. 10 p.405.
- Holub M., Budesinsky M., Smitalová Z., Saman D.: Tetrahedron Lett.<u>25</u>, 3755(1984).
- 14. Kutschabsky L., Reck G., Pfeiffer D., Ripperger H., Z.Chem.24,24(1984).

(Received in UK 4 October 1984)